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Abstract. The dependence of the optimal solution average costEm of the set covering problem
on the density of 1’s of the incidence matrix (β) and on the number of constraints (P )
is investigated in the limit where the number of items (N ) goes to infinity. The annealed
approximation is employed to study two stochastic models: the constant density model, where
the elements of the incidence matrix are statistically independent random variables, and the Karp
model, where the rows of the incidence matrix possess the same number of 1’s. Lower bounds
for Em are presented in the case thatP scales with lnN andβ is of order 1, as well as in the
case thatP scales linearly withN andβ is of order 1/N . It is shown that in the case thatP

scales with expN andβ is of order 1 the annealed approximation yields exact results for both
models.

1. Introduction

The set covering problem (SCP) is the zero–one integer program which consists of finding
the N -tupless = (s1, s2, . . . , sN) that minimize the cost function

E =
N∑
i

cisi (1.1)

subject toP linear constraints
N∑
i

akisi > ek k = 1, . . . , P (1.2)

and to the integrality constraintsi = 0, 1. Hereaki = 0, 1 are the elements of theP by N

incidence matrixA, ci is the cost assigned to elementi, andek = 1∀k. In this paper we
consider the so-called minimum cardinality set covering problem for whichci = 1∀i. A
particular instance of theSCPis then solely determined by the matrixA. If we think of the
columns ofA ande as sets, then this problem is equivalent to finding the cheapest union
of sets fromA that covers every component ofe, hence the denomination set covering for
this combinatorial optimization problem.

Despite its simplicity, theSCPmodels numerous practical situations such as airline crew
scheduling, political redistricting and information retrieval (Salkin 1975), to name only the
most classical ones. Moreover, theSCPwas shown to belong to theNP -complete class (Karp
1972), which basically means that there is no known deterministic algorithm guaranteed to
solve all instances of this problem within a polynomial time bound (Garey and Johnson
1979). However, since theNP -completeness proof is a worst-case analysis, it does not
tell us anything about particular instances of theSCP, which actually may be solvable by a
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polynomially bound heuristic algorithm. There is an alternative and perhaps complementary
method of analysis, so-called average-case analysis, where, instead of considering the worst
possible instance, the analyses focus on a set of ‘typical’ instances. The difficulty, of
course, is to generate a collection of typical instances for problems we encounter in practice.
Usually, a stochastic model is assumed for the matrixA, which functions then as a generator
of random instances. The obvious drawback of this approach is that we can seldom know
what probability distribution for the elements ofA is realistic. Nevertheless, there is a great
practical interest in the analysis of the stochastic models since they are widely employed in
the evaluation of the performance of heuristic algorithms. We note that for the stochastic
models one expects that the larger the size of the problemN , the more unlikely the worst
cases are to arise.

The relevant parameter to describe a stochastic model for the minimum cardinality set
covering problem is the density of 1’s of the matrixA, because the feasibility of an instance
depends on the existence of at least one 1 in each row ofA. In this note we study two
stochastic models, which we describe in the following. The first model, due to Gimpel
(1967), is termed theconstant density modelbecause it assumes that the elementsaki are
statistically independent random variables drawn from the distribution

Pcd({aki}) =
∏
ik

βδ(aki − 1) + (1 − β)δ(aki) (1.3)

where 06 β 6 1 is a control parameter measuring the density of 1’s of the incidence
matrix, andδ(x) is the Dirac delta function. This model was studied by Vercellis (1984) in
the case whenN → ∞ andP = exp(αN), whereα is a parameter independent ofN . The
main result of Vercellis’ analysis is that the optimal cost is given by

Em = − ln P

ln(1 − β)
(1.4)

with a probability of 1. Actually, the method employed by Vercellis to derive this result
was to show that the expression in theRHS of equation (1.4) is both an upper bound and a
lower bound forEm.

The second model, proposed by Karp (1976), assumes that there is a constant number
of 1’s in each row of the incidence matrix, i.e.

N∑
i

aki = b k = 1, . . . , P . (1.5)

Thus the elementsaki i = 1, . . . , N are no longer statistically independent random variables.
Elements belonging to different rows ofA, however, are statistically independent. The ratio
β = b/N gives then the density of 1’s of the incidence matrix. The probability distribution
we use to describe this model, which we will refer to as theKarp model, is the following

Pk({aki}) =
∏
k

1

C(N, k)
δ

(
b,

∑
i

aki

)
(1.6)

where δ(k, l) is the Kronecker delta and we have introduced the notationC(n, k) =
n!/k!(n − k)!. To the best of our knowledge, the dependence of the optimal costEm

on the parametersβ andP is not known for this model.
Statistical mechanics techniques developed in the study of spin glasses, namely, the

replica method and the annealed approximation, have been applied successfully in the study
of stochastic models of several classical combinatorial optimization problems, such as the
graph partitioning problem (Fu and Anderson 1986), the matching problem (Mèzard and
Parisi 1985), and the travelling salesman problem (Vannimenus and Mèzard 1984, M̀ezard
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and Parisi 1986). We refer the reader to Mèzardet al (1987) for a thorough presentation of
the accomplishments of the statistical mechanics approach to the analysis of optimization
problems. In general, these analyses are restricted to the calculation of the average value
of the optimal cost solutions. More recently, Barbato and Fontanari (1994) have employed
the statistical mechanics approach to obtain microscopic information about the structure
of the minimum weight solutions to a set of linear equations. It should be mentioned
that other techniques from statistical physics, besides those mentioned above, can also be
useful to the analysis of combinatorial problems. A remarkable example of this is the recent
application of finite-size scaling to study threshold phenomena in thek-satisfiability problem
(Kirkpatrick and Selman 1994).

In this paper we employ the annealed approximation in the microcanonical ensemble
formalism of the statistical mechanics (Fontanari and Meir 1993) to derive rigorous lower
bounds toEm as a function ofβ and P for both stochastic models described above. The
basic quantity we must evaluate in this formalism isN (E), the number ofN -tupless that
possess costE and satisfy constraints (1.2). It is given by

N (E) =
∑
{s}

δ

(
E,

∑
i

si

) ∏
k

2

( ∑
i

akisi − 1

)
(1.7)

where the summation is over the 2N binary N -tuples s, and 2(x) = 1 if x > 0 and
0 otherwise. The standard procedure to obtain physically meaningful results is to take
averages over extensive quantities only (Binder and Young 1986). In this case, the extensive
quantity associated toN is the average entropyS(E) = 〈ln N (E)〉, where〈 〉 stands for
the averages over the random variablesaki . The optimal profitEm is determined by the
conditionsS(E < Em) → −∞ andS(E > Em) > 0. The annealed approximation consists
of taking the averages within the logarithm function, i.e.

Sa(E) = ln〈N (E)〉. (1.8)

Note that whileS is clearly non-negative or−∞, the annealed entropySa can take on
finite negative values. Although the annealed entropy is physically meaningless, it gives a
rigorous upper bound to the correct entropy, i.e.Sa > S, which can easily be demonstrated
using the convexity of the logarithm function. In particular, this inequality implies that
S → −∞ for any E such thatSa(E) < 0. This is the reason why the value ofE at
which Sa vanishes,Ea

m, is a rigorous lower bound toEm (Fontanari and Meir 1993). A
similar technique for deriving lower bounds was employed by Vannimenus and Mèzard
(1984) using the canonical ensemble formalism. In fact, as pointed out by those authors,
the annealed approximation is very useful to determine the appropriate scaling ofP with
N in the asymptotic limitN → ∞. In particular, for the set covering problem we have
found that only two scalings give non-trivial instances forβ independent ofN , namely,
P = α ln N andP = exp(αN). By a trivial instance we mean either an unfeasible instance
(Sa < 0∀E) or an easy instance (Sa > 0∀E).

Besides the calculation of the annealed entropy, which demands the evaluation of the
first moment of the distribution ofN , we also calculate its varianceσ 2 = 〈N 2〉 − 〈N 〉2.
The vanishing of this quantity implies thatN is a self-averaging quantity and hence that
the annealed approximation yields exact results. In fact, we show thatσ 2 tends to zero in
the regime studied by Vercellis (1984) and, as expected, that the results of the annealed
approximation coincide with the results obtained by Vercellis for the constant density model.
Our approach, however, can also be applied to the Karp model, in contrast to Vercellis’
which is limited to the constant density model.
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The remainder of this paper is organized as follows. In section 2 we study the constant
density model and in section 3 we consider the Karp model. In the appendix we employ the
replica method to derive the linear programming relaxation lower bound for the constant
density model in the regime whereE is of order 1. Finally, in section 4 we discuss our
results and present some concluding remarks.

2. The constant density model

We proceed now with the explicit calculation of the annealed entropy in the case when the
elementsaki are distributed according to equation (1.3). Using the integral representations
for the theta and the Kronecker delta functions, it is straightforward to carry out the averages
over aki and the summation overs. The final result, valid for all values ofN and P , is
simply

Sa(E) = ln C(N, E) + P ln[1 − (1 − β)E ]. (2.1)

In the following we will focus on the asymptotic limitN → ∞ with β independent
of N . One the one hand, ifE is of order 1 then lnC(N, E) will be of order lnN and,
therefore, a non-trivial regime can be achieved only by the scalingP = α ln N . On the
other hand, ifE is of orderN , sayE = εN , then lnC(N, E) will also be of orderN , while
the second term of theRHS of equation (2.1) will be of orderP exp(−N). Thus, we can
find a non-trivial regime only ifP scales with exp(αN).

We consider first the scalingP = α ln N . In this case, neither the costE nor the
annealed entropySa are extensive quantities. In fact we have

Sa(E)/ ln N = E + α ln[1 − (1 − β)E ]. (2.2)

As mentioned in the introduction, the solutionEa
m of the equationSa(E) = 0 is a lower

bound for the minimum costEm. This lower bound is presented in figure 1 as a function of
β for several values ofα. In this regime, all instances of theSCPseem to be feasible, since
given α andβ it is always possible to find an arbitrarily largeE for which Sa is positive.
We must mention that within the annealed approximation framework we cannot guarantee
that an instance is feasible; we can, however, guarantee that it is unfeasible, sinceSa < 0
implies S → −∞.

The simplest method to obtain lower bounds to integer programming problems is
probably the linear programming (LP) relaxation, which consists of relaxing the integrality
constraint on the variablessi , so that 06 si 6 1. The exact analytical derivation of this
bound, presented in the appendix, is possible only in the case whenE is of order 1, which
implies thatsi is of order 1/N . The final result, which does not depend onP , is simply

ELP
m = 1

β
. (2.3)

From the comparison between theLP relaxation bound and the annealed one, presented in
figure 1, we conclude that the latter is tighter than the former for largeP only.

In the regime considered by Vercellis (1984), whereP = exp(αN) and E = εN , the
annealed entropy becomes

Sa(ε)/N = −ε ln ε − (1 − ε) ln(1 − ε) − 1

N
exp{N [α + ε ln(1 − β)]}. (2.4)

Thus the value of the annealed entropy is determined by the sign of the argument of the
exponential. More specifically, ifε > εa

m, where

εa
m = − α

ln(1 − β)
(2.5)
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Figure 1. Annealed lower bound for the optimal cost as a function of the density of 1’sβ of
the incidence matrix for, from bottom to top,α = P/ ln N = 1, 10, 100 and 1000. The constant
density model and the Karp model give identical results in this limit. The broken curve is the
linear programming relaxation lower bound for the constant density model.

thenSa/N = −ε ln ε − (1 − ε) ln(1 − ε), while Sa → −∞, otherwise. Sinceα = ln P/N ,
the annealed lower boundEa

m = εa
mN is identical to the optimal cost derived by Vercellis

(1984). Furthermore, the annealed entropy is positive or−∞, presenting then a physically
correct behaviour. These results lead us to conjecture that the annealed calculation may be
exact for this scaling. To prove this we calculate the varianceσ 2 = 〈N 2〉 − 〈N 〉2 of the
distribution ofN . Following a procedure analogous to that used for the calculation of〈N 〉
we find

σ 2 =
E∑

n=0

N !

n!(N − 2E + n)![(E − n)!] 2
[0P

n − 32P ] (2.6)

where

0n = 1 − 2(1 − β)E + (1 − β)2E−n (2.7)

and

3 = 1 − (1 − β)E. (2.8)

Similarly to equation (2.1), this equation is exact for all values ofN andP . The following
discussion, however, will be restricted to the caseP = exp(αN) andN → ∞. Moreover,
since our goal is to prove the exactness of the annealed results we consider only the regime
ε > εa

m for which Sa/N is finite. In this case we have

α < −ε ln(1 − β) (2.9)

so that32P → 1. Thus, to show thatσ 2 vanishes we must show that0P
n → 1 for all n.

However, this is obvious because ifα satisfies the inequality (2.9) then it will also satisfy
α < −(2ε − n/N) ln(1 − β)∀n, that implies0P

n → 1.
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Figure 2. Exact optimal cost for the constant density model (full curves) and for the Karp model
(broken curves) as functions of the density of 1’sβ of the incidence matrix for, from bottom to
top, α = ln P/N = 0.1, 0.25, 0.5 and 1.

In figure 2 we presentεa
m = εm as a function ofβ for several values ofα. We note that

in the regimeα > − ln(1 − β) the instances are unfeasible, i.e. the constraints cannot be
satisfied even ifε = 1.

Finally, we consider the linear scalingP = αN . This scaling yields non-trivial instances
provided thatE is extensive andβ vanishes likeN−1, sayβ = β̂/N with β̂ of order 1. In
this case we have

Sa(ε)/N = −ε ln ε − (1 − ε) ln(1 − ε) + α ln[1 − exp(−εβ̂)]. (2.10)

The annealed lower boundεa
m is presented in figure 3 as a function of 0< β̂ < ∞ for

several values ofα. Similar to the case discussed before, there are regions in the plane
(β̂, α) where the instances are unfeasible; the curves forεa

m, however, do not begin from
εa

m = 1.

3. The Karp model

In this section we consider the stochastic model proposed by Karp (1976) in which the
rows of the incidence matrixA possess the same number of 1’s. Although the elements
aki belonging to the same row ofA are no longer statistical independent variables, the
calculations are no more involved than for the constant density model. In fact, using the
integral representations for the Kronecker deltas and for the theta function we can easily
obtain

Sa(E) = ln C(N, E) + P ln

(
1 − C(N − E, b)

C(N, b)

)
(3.1)

where we have used the distribution (1.6) to carry out the average over the elementsaki .
This equation is valid for all values ofN and P . Note the correspondence between the
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Figure 3. Annealed lower bound for the optimal cost in the limit where the density of 1’s
β vanishes likeβ̂/N for, from bottom to top,α = P/N = 0.1, 0.25, 0.5 and 1. The curve
for α = 1 for the constant density model does not appear in the figure because the problem is
unfeasible in the range of̂β considered. The convention is the same as in figure 2.

ratio γ = C(N −E, b)/C(N, b) and the term(1−β)E of the analogous equation, equation
(2.1), for the constant density model.

In the following we shall focus on the possible scalings ofP with N whenN → ∞.
Let us consider the case whereb is extensive, sayb = βN . If E is of order 1 then
γ → (1−β)E and, therefore, this model becomes equivalent to the constant density model.
The behaviour of the lower boundEa

m is presented in figure 1. Similarly to the constant
density model, in the case whereE = εN a non-trivial regime occurs only ifP = exp(αN),
yielding the following annealed entropy:

Sa(ε)/N = −ε ln ε − (1 − ε) ln(1 − ε) − 1

N
2(1 − ε − β) exp(N4) (3.2)

where

4 = α + (1 − ε) ln(1 − ε) + (1 − β) ln(1 − β) − (1 − ε − β) ln(1 − ε − β). (3.3)

HenceSa → −∞ if 4 > 0 andSa is positive and finite otherwise. Thus the annealed
estimateεa

m for the minimal cost is obtained by solving4(ε) = 0 for α and β fixed. As
for the constant density model, we can prove that the annealed lower bound is exact by
showing that the varianceσ 2 = 〈N 2〉 − 〈N 〉2 vanishes in this limit. More specifically,σ 2

is still given by equation (2.6), except that0n and3 are now given by

0n = 1 − 2
C(N − E, b)

C(N, b)
+ C(N − 2E + n, b)

C(N, b)
(3.4)

and

3 = 1 − C(N − E, b)

C(N, b)
. (3.5)
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In the regimeε > εa
m we can easily show that0P

n → 32P → 1∀n so thatσ 2 → 0. The
exact minimal cost densityεa

m = εm is presented in figure 2 together with the results for the
constant density model. Note that the instances of theSCPgenerated by the Karp model are
always feasible forβ > 0.

Similarly to the constant density model, the linear scalingP = αN gives non-trivial
results if b is of order 1. Actually, this corresponds to a vanishing density of 1’s,
β = b/N → 0, so b plays the same role as the parameterβ̂ introduced in the analysis
of the constant density model. In this case, the annealed entropy equation (3.1) becomes

Sa(ε)/N = −ε ln ε − (1 − ε) ln(1 − ε) + α ln[1 − (1 − ε)b]. (3.6)

The lower boundεa
m is presented in figure 3 together with the results for the constant density

model. The main difference between these models is that the Karp model always generates
feasible instances. We note that the two models yield very similar results for smallα or
large β̂. In fact, this occurs whereverεa

m is small.

4. Conclusion

Despite the importance of the set covering problem, attested by the numerous practical
situations it models (Salkin 1975), there are very few average-case results concerning the
dependence of the optimal costEm on the parameters that describe the stochastic models.
Typically, these parameters are the density of 1’s of the incidence matrix (β), the number
of constraints (P ), and the number of items (N ). In general, the analyses are restricted to
the evaluation of the performance of greedy heuristic algorithms in test problems generated
by the stochastic models (Gimpel 1967, Karp 1976). The only exception we know is the
work of Vercellis (1984) which, although explicitly focusing on the dependence ofEm on
the control parameters, is limited to a particular scaling ofP with N and to a specific
stochastic model, namely, the constant density model. In this sense, we believe that the
results presented in this paper which extend the results of Vercellis (1984) to the Karp model
and give lower bounds for the optimal cost for different scalings ofP with N , are relevant
contributions to the statistical analysis of theSCP. As mentioned before, the usefulness of this
type of analysis is due to the extensive use of stochastic models to generate test problems
for the evaluation of the performance of heuristic algorithms.

Besides the annealed approximation and the linear programming relaxation discussed in
this paper, another powerful method for generating lower bounds for integer programming
problems is the Lagrangian relaxation technique (Beasley 1993). For the set covering
problem, it consists of relaxing the constraints (1.2) by introducingP Lagrangian multipliers
λ = (λ1, . . . , λP ) into the cost function (1.1) which is then written as

L(λ, s) =
P∑
k

ekλk +
N∑
i

si

(
1 −

∑
k

λkaki

)
(4.1)

with λk > 0. Forλ fixed, theN -tuples that minimizes L is simplysi = 1 if
∑

k λkaki > 1,
andsi = 0 otherwise. Hence

L(λ) =
P∑
k

ekλk −
N∑
i

( ∑
k

λkaki − 1

)
2

( ∑
k

λkaki − 1

)
. (4.2)

It can be easily shown thatL(λ) gives a lower bound forEm for any λ (Beasley 1993).
The problem then becomes to find the set of Lagrangian multipliers that maximizesL. This
procedure has been applied successfully to a similar integer programming problem, namely,
the knapsack problem (Meantiet al 1990, Fontanari 1995). In the knapsack problem, theaki
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are real-valued random variables uniformly distributed over the unit interval andek = eN

with e of order 1. In fact, it can be shown that the Lagrangian relaxation bound converges
to the optimal cost solution with probability 1 in the regime whereN goes to infinity andP
remains finite (Meantiet al 1990). Basically, the reason why this approach does not work
for the set covering problem is becauseek = 1 is non-extensive and therefore, forN large,
only the second term in theRHS of equation (4.2) will contribute toL. Since this term is
negative or zero, the maximum value thatL can take on isL = 0, which is a quite trivial
lower bound.

Finally, we should mention that the difficulty in applying the replica formalism to the
set covering problem or to the knapsack problem, that would allow for the exact calculation
of the average entropy, is the basic requirement that the elementsaki must be positive.
As a result, the average overaki generates effective high-order interactions between the
replicas, which makes the analysis extremely involved. Thus, it seems that the annealed
approximation is the only technique that can be used to study theSCP in the diverse non-
trivial regimes of scaling ofP with N .
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Appendix

In this appendix we calculate the linear programming (LP) relaxation lower bound for the
optimal cost of the minimum cardinality set covering problem for the constant density model
in the regime whereE is of order 1. In theLP relaxation the problem is again to minimize
the cost (1.1) subject to constraints (1.2), except that now thesi ’s are real-valued variables,
i.e. 0 6 si 6 1. Since the entropy can take on negative values in this case, we employ
the canonical ensemble formulation of the statistical mechanics to obtain theLP relaxation
lower bound. It is given by

ELP
m = − lim

h→∞
∂

∂h
〈ln Z(h)〉 (A.1)

where

Z(h) =
∏
j

∫ 1

0
dsj exp

(
− h

∑
j

sj

) ∏
k

2

( ∑
j

akj sj − 1

)
(A.2)

is the partition function, andh is the inverse of the temperature. The quenched average〈 〉
over the variablesakj is carried out through the replica method. Using the identity

〈ln Z〉 = lim
n→0

1

n
ln〈Zn〉 (A.3)

we first evaluate〈Zn〉 for integern and then analytically continue ton = 0. The calculation
is simple in this limit because ifE = ∑

j sj is of order 1 thensj must be of order 1/N ,
so that we can make expansions in powers ofsj and retain only the leading term. More
specifically, using the integral representation for the theta function we are faced with the
evaluation of the following average:

M =
〈

exp

(
i

P∑
k

n∑
a

N∑
j

ŷkaakj s
a
j

)〉
=

∏
jk

〈
exp

(
iakj

n∑
a

ŷkas
a
j

)〉
(A.4)
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whereŷka is a Lagrangian multiplier that appears in the integral representation for the theta
function. Note that we have made explicit use of the statistical independence of theakj that
characterize the constant density model. Expanding in powers ofsj and keeping terms of
order 1/N yields

M ≈ exp

(
i

P∑
k

n∑
a

N∑
j

ŷka〈akj 〉sa
j

)
= exp

(
iβ

P∑
k

n∑
a

N∑
j

ŷkas
a
j

)
. (A.5)

Thus the net result of the average was to replaceakj by its meanβ. Introducing the auxiliary
variableEa = ∑

j sa
j , it is straightforward to carry out the integration oversa

j . The final
result is

(〈Zn〉)1/n ≈
∫ ∞

−∞
dE2(βE − 1) e−hE

∫ ∞

−∞

dÊ

π
eiÊ(2E−N)

(
sinÊ

Ê

)N

. (A.6)

Here Ê is the Lagrangian multiplier associated with the auxiliary variableE. Since the
averaging procedure has not resulted in an effective interaction between replicas, then

different replicas give the same contribution to thenth moment ofZ. Furthermore, due to
the replacement ofakj by β the constraints become independent of the indexk = 1, . . . , P ,
and since2P (x) = 2(x) the parameterP disappears altogether from our results. Using
the following approximation(

sinx

x

)N

≈ exp(−Nx2/6) (A.7)

valid for largeN , to evaluate the integral over̂E we find

〈ln Z〉 ≈ − 3
2N + 1

24N(h − 6)2 + ln H

[
1/β + N(h − 6)/12√

N/12

]
(A.8)

whereH(x) = ∫ ∞
x

dt/
√

2π e−t2/2. Taking the limitN → ∞ yields

ELP = 1

β
+ 1

h − 6
(A.9)

if h > 6, and

ELP = 1
12N(6 − h) (A.10)

otherwise. HereELP = −∂〈ln Z(h)〉/∂h. Thus our theory is not valid in the regimeh < 6
since we have assumed thatELP is of order 1. Finally, taking the limith → ∞ in equation
(A.9) yields

ELP
m = 1

β
. (A.11)

We emphasize that this result was derived under the assumption of statistical independence
of the elementsaki i = 1, . . . , N , which is not valid for the Karp model. We must be
careful not to undervalue equation (A.11). Although it is obvious that if the elementsaki

are replaced by their meansβ in (1.2) then the optimal cost must equal 1/β, the calculations
presented above show how this replacement can be justified under the assumptions thatE

is of order 1 and that the elementsaki are statistically independent random variables.
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