IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

A statistical mechanics analysis of the set covering problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 473
(http://iopscience.iop.org/0305-4470/29/3/004)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:08

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gern29 (1996) 473-483. Printed in the UK

A statistical mechanics analysis of the set covering problem

J F Fontanari

Instituto de Fsica de @0 Carlos, Universidade déi& Paulo, Caixa Postal 369, 13560-97@bS
Carlos SP, Brazil

Received 20 June 1995

Abstract. The dependence of the optimal solution average Egpstf the set covering problem

on the density of 1's of the incidence matrig)(and on the number of constraint®)(

is investigated in the limit where the number of item€)(goes to infinity. The annealed
approximation is employed to study two stochastic models: the constant density model, where
the elements of the incidence matrix are statistically independent random variables, and the Karp
model, where the rows of the incidence matrix possess the same number of 1's. Lower bounds
for Er are presented in the case thatscales with InV and g is of order 1, as well as in the

case thatP scales linearly withV and g8 is of order ¥ N. It is shown that in the case th&

scales with exgv and g is of order 1 the annealed approximation yields exact results for both
models.

1. Introduction

The set covering problens¢p is the zero—one integer program which consists of finding
the N-tupless = (sy, 52, . .., sy) that minimize the cost function

N
E = ZC,’S,’ (11)
subject toP linear constraints
N
> aisi > e k=1,...,P (1.2)

and to the integrality constraist = 0, 1. Hereq;; = 0, 1 are the elements of the by N
incidence matrixA4, ¢; is the cost assigned to elementande;, = 1Vk. In this paper we
consider the so-called minimum cardinality set covering problem for whick 1Vi. A
particular instance of thecpis then solely determined by the matu&. If we think of the
columns of A ande as sets, then this problem is equivalent to finding the cheapest union
of sets from.A that covers every component ef hence the denomination set covering for
this combinatorial optimization problem.

Despite its simplicity, thescemodels humerous practical situations such as airline crew
scheduling, political redistricting and information retrieval (Salkin 1975), to name only the
most classical ones. Moreover, thePwas shown to belong to the P-complete class (Karp
1972), which basically means that there is no known deterministic algorithm guaranteed to
solve all instances of this problem within a polynomial time bound (Garey and Johnson
1979). However, since th& P-completeness proof is a worst-case analysis, it does not
tell us anything about particular instances of #e® which actually may be solvable by a
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polynomially bound heuristic algorithm. There is an alternative and perhaps complementary
method of analysis, so-called average-case analysis, where, instead of considering the worst
possible instance, the analyses focus on a set of ‘typical’ instances. The difficulty, of
course, is to generate a collection of typical instances for problems we encounter in practice.
Usually, a stochastic model is assumed for the ma#tjxvhich functions then as a generator

of random instances. The obvious drawback of this approach is that we can seldom know
what probability distribution for the elements &£ is realistic. Nevertheless, there is a great
practical interest in the analysis of the stochastic models since they are widely employed in
the evaluation of the performance of heuristic algorithms. We note that for the stochastic
models one expects that the larger the size of the proNerthe more unlikely the worst
cases are to arise.

The relevant parameter to describe a stochastic model for the minimum cardinality set
covering problem is the density of 1's of the matyk because the feasibility of an instance
depends on the existence of at least one 1 in each roy.ofn this note we study two
stochastic models, which we describe in the following. The first model, due to Gimpel
(1967), is termed theonstant density modélecause it assumes that the elementsare
statistically independent random variables drawn from the distribution

Peallaw}) = [ | B8 — 1) + (1 — B)S(aw) (1.3)
ik

where 0< B < 1 is a control parameter measuring the density of 1's of the incidence
matrix, ands (x) is the Dirac delta function. This model was studied by Vercellis (1984) in
the case wheW — oo and P = exp(eN), wherecx is a parameter independent §f The
main result of Vercellis’ analysis is that the optimal cost is given by
InP
In(1-B)
with a probability of 1. Actually, the method employed by Vercellis to derive this result
was to show that the expression in tkies of equation (1.4) is both an upper bound and a
lower bound forEp,.
The second model, proposed by Karp (1976), assumes that there is a constant number
of 1's in each row of the incidence matrix, i.e.

(1.4)

m=

N
> ai=b k=1,...,P. (1.5)

Thus the elementg,; i = 1, ..., N are no longer statistically independent random variables.
Elements belonging to different rows gf, however, are statistically independent. The ratio
B = b/N gives then the density of 1's of the incidence matrix. The probability distribution
we use to describe this model, which we will refer to as Kaep mode] is the following

1
Pr(ar}) = 5<b, a i) (1.6)
kA 1:[ C(N, k) ZZ k

where §(k, 1) is the Kronecker delta and we have introduced the notatign, k) =
n!'/k'(n — k)!. To the best of our knowledge, the dependence of the optimal Egst
on the parameterg and P is not known for this model.

Statistical mechanics techniques developed in the study of spin glasses, namely, the
replica method and the annealed approximation, have been applied successfully in the study
of stochastic models of several classical combinatorial optimization problems, such as the
graph partitioning problem (Fu and Anderson 1986), the matching probleézgid and
Parisi 1985), and the travelling salesman problem (Vannimenus armafd 1984, Mzard
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and Parisi 1986). We refer the reader té2drdet al (1987) for a thorough presentation of

the accomplishments of the statistical mechanics approach to the analysis of optimization
problems. In general, these analyses are restricted to the calculation of the average value
of the optimal cost solutions. More recently, Barbato and Fontanari (1994) have employed
the statistical mechanics approach to obtain microscopic information about the structure
of the minimum weight solutions to a set of linear equations. It should be mentioned
that other techniques from statistical physics, besides those mentioned above, can also be
useful to the analysis of combinatorial problems. A remarkable example of this is the recent
application of finite-size scaling to study threshold phenomena ik-gaisfiability problem
(Kirkpatrick and Selman 1994).

In this paper we employ the annealed approximation in the microcanonical ensemble
formalism of the statistical mechanics (Fontanari and Meir 1993) to derive rigorous lower
bounds toE,, as a function ofg and P for both stochastic models described above. The
basic quantity we must evaluate in this formalism\$E), the number ofv-tupless that
possess cost and satisfy constraints (1.2). It is given by

N(E) = Z&(E, Zsi) ]:[ ®<lZakisi - 1) (1.7)

{s} i

where the summation is over thé’ Dinary N-tupless, and®(x) = 1 if x > 0 and

0 otherwise. The standard procedure to obtain physically meaningful results is to take
averages over extensive quantities only (Binder and Young 1986). In this case, the extensive
guantity associated td/ is the average entrop§(E) = (InN(E)), where( ) stands for

the averages over the random variablgs The optimal profitE, is determined by the
conditionsS(E < E) — —oo andS(E > Er) > 0. The annealed approximation consists

of taking the averages within the logarithm function, i.e.

Sa(E) = IN(N(E)). (1.8)

Note that whileS is clearly non-negative oroo, the annealed entrop§, can take on
finite negative values. Although the annealed entropy is physically meaningless, it gives a
rigorous upper bound to the correct entropy, S8.> S, which can easily be demonstrated
using the convexity of the logarithm function. In particular, this inequality implies that
S — —oo for any E such thatS;(E) < 0. This is the reason why the value &f at
which S, vanishes,E},, is a rigorous lower bound t&, (Fontanari and Meir 1993). A
similar technique for deriving lower bounds was employed by Vannimenus agwhid
(1984) using the canonical ensemble formalism. In fact, as pointed out by those authors,
the annealed approximation is very useful to determine the appropriate scaligvih
N in the asymptotic limitN — oo. In particular, for the set covering problem we have
found that only two scalings give non-trivial instances fbindependent ofvV, namely,
P =«aln N and P = exp(aN). By a trivial instance we mean either an unfeasible instance
(Sa < OVE) or an easy instanceS{ > OVE).

Besides the calculation of the annealed entropy, which demands the evaluation of the
first moment of the distribution o\, we also calculate its varianeg® = (N?) — (N)2.
The vanishing of this quantity implies that is a self-averaging quantity and hence that
the annealed approximation yields exact results. In fact, we showrth&inds to zero in
the regime studied by Vercellis (1984) and, as expected, that the results of the annealed
approximation coincide with the results obtained by Vercellis for the constant density model.
Our approach, however, can also be applied to the Karp model, in contrast to Vercellis’
which is limited to the constant density model.
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The remainder of this paper is organized as follows. In section 2 we study the constant
density model and in section 3 we consider the Karp model. In the appendix we employ the
replica method to derive the linear programming relaxation lower bound for the constant
density model in the regime whet® is of order 1. Finally, in section 4 we discuss our
results and present some concluding remarks.

2. The constant density model

We proceed now with the explicit calculation of the annealed entropy in the case when the
elementsy; are distributed according to equation (1.3). Using the integral representations
for the theta and the Kronecker delta functions, it is straightforward to carry out the averages
over a;; and the summation ovesr. The final result, valid for all values oV and P, is
simply

Sa(E) =INC(N, E) + PIn[1 — (1 - B)F]. (2.1)

In the following we will focus on the asymptotic limi¥ — oo with 8 independent
of N. One the one hand, if is of order 1 then IC(N, E) will be of order InN and,
therefore, a non-trivial regime can be achieved only by the scafing «InN. On the
other hand, ifE is of orderN, sayE = €N, then InC (N, E) will also be of orderV, while
the second term of theHs of equation (2.1) will be of ordeP exp(—N). Thus, we can
find a non-trivial regime only ifP scales with exxN).

We consider first the scalin@ = «InN. In this case, neither the co& nor the
annealed entropg, are extensive quantities. In fact we have

Sa(E)/INN = E +aIn[1 — (1 - B)F]. (2.2)

As mentioned in the introduction, the solutidf, of the equationS,(E) = 0 is a lower
bound for the minimum cosk,. This lower bound is presented in figure 1 as a function of

B for several values af. In this regime, all instances of ttezPseem to be feasible, since
givena and g it is always possible to find an arbitrarily large for which S, is positive.

We must mention that within the annealed approximation framework we cannot guarantee
that an instance is feasible; we can, however, guarantee that it is unfeasibleSgsiade
implies S — —oo.

The simplest method to obtain lower bounds to integer programming problems is
probably the linear programmingr) relaxation, which consists of relaxing the integrality
constraint on the variables, so that 0< s; < 1. The exact analytical derivation of this
bound, presented in the appendix, is possible only in the case wherof order 1, which
implies thats; is of order ¥ N. The final result, which does not depend Bnis simply

1
EP = . 2.3
m =g (2.3)

From the comparison between the relaxation bound and the annealed one, presented in
figure 1, we conclude that the latter is tighter than the former for |&@gmly.

In the regime considered by Vercellis (1984), whéte= exp(aN) and E = ¢N, the
annealed entropy becomes

Sa(e)/N = —€lne —(1—¢e)In(1—¢) — % exp{N[x + €In(1— B)]}. (2.4)

Thus the value of the annealed entropy is determined by the sign of the argument of the
exponential. More specifically, f > €2, where
a o
- _ 2.5
M= - ) (2.5)
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Figure 1. Annealed lower bound for the optimal cost as a function of the density op 10§

the incidence matrix for, from bottom to top,= P/In N = 1, 10, 100 and 1000. The constant
density model and the Karp model give identical results in this limit. The broken curve is the
linear programming relaxation lower bound for the constant density model.

thenS;/N = —elne — (1 — ¢) In(1 — ¢€), while S; — —o0, otherwise. Sincee = In P/N,

the annealed lower bounfi2 = €2 N is identical to the optimal cost derived by Vercellis
(1984). Furthermore, the annealed entropy is positive as, presenting then a physically
correct behaviour. These results lead us to conjecture that the annealed calculation may be
exact for this scaling. To prove this we calculate the variante= (N?2) — (N)? of the
distribution of M. Following a procedure analogous to that used for the calculatidn/of

we find

- N
2= P _ A2P
’ _;n!(N—2E+n)![(E_n)!]2 I, —A7] (2.6)
where
Fn =1- 2(1 —_ ﬂ)E + (1 _ ,3)2E7n (27)
and
A=imampr 2.8)

Similarly to equation (2.1), this equation is exact for all valuegvodnd P. The following
discussion, however, will be restricted to the case- exp(a N) and N — oco. Moreover,

since our goal is to prove the exactness of the annealed results we consider only the regime
€ > €2 for which Sy/N s finite. In this case we have

a<—eln(l-p) (2.9)

so thatA?” — 1. Thus, to show that? vanishes we must show thaf’ — 1 for all n.
However, this is obvious becausedifsatisfies the inequality (2.9) then it will also satisfy
o < —(2¢ —n/N)In(1 — B)V¥n, that impliesI"” — 1.
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Fig. 2

Figure 2. Exact optimal cost for the constant density model (full curves) and for the Karp model
(broken curves) as functions of the density of g'®f the incidence matrix for, from bottom to
top,« =InP/N =0.1,0.25 0.5 and 1.

In figure 2 we present?, = e, as a function ofs for several values ok. We note that
in the regimea > —In(1 — B) the instances are unfeasible, i.e. the constraints cannot be
satisfied even it = 1.

Finally, we consider the linear scalify= o N. This scaling yields non-trivial instances
provided thatE is extensive ang vanishes likeN 2, sayf = B/N with 8 of order 1. In
this case we have

Sa(€)/N = —€lne — (1 —€) In(1 — €) + a In[1 — exp(—ep)]. (2.10)

The annealed lower boungf, is presented in figure 3 as a function of<0 B < oo for
several values of. Similar to the case discussed before, there are regions in the plane
(B, @) where the instances are unfeasible; the curvesorhowever, do not begin from

eq =1

3. The Karp model

In this section we consider the stochastic model proposed by Karp (1976) in which the
rows of the incidence matri¥d possess the same number of 1's. Although the elements
ar; belonging to the same row o#l are no longer statistical independent variables, the
calculations are no more involved than for the constant density model. In fact, using the
integral representations for the Kronecker deltas and for the theta function we can easily
obtain

(3.1)

Sa(E) =INC(N, E) + Pln <1_ C(N‘Eb)>

C(N,b)

where we have used the distribution (1.6) to carry out the average over the elements
This equation is valid for all values a¥ and P. Note the correspondence between the
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Figure 3. Annealed lower bound for the optimal cost in the limit where the density of 1's

B vanishes likef/N for, from bottom to topx = P/N = 0.1,0.25,0.5 and 1. The curve

for « = 1 for the constant density model does not appear in the figure because the problem is
unfeasible in the range ¢f considered. The convention is the same as in figure 2.

ratioy = C(N — E, b)/C(N, b) and the term(1— 8)* of the analogous equation, equation
(2.1), for the constant density model.

In the following we shall focus on the possible scalingspofvith N when N — oo.
Let us consider the case whebeis extensive, sayp = BN. If E is of order 1 then
y — (1—B)E and, therefore, this model becomes equivalent to the constant density model.
The behaviour of the lower boun#g, is presented in figure 1. Similarly to the constant
density model, in the case whefe= ¢ N a non-trivial regime occurs only iP = exp(aN),
yielding the following annealed entropy:

Sa(e)/N = —€lne —(1—¢)In(1—¢) — %@(1 —e—pB)exp(NE) (3.2)

where
E=a+A—-elnl-e+A-BINA-B) —A—-—€—-B)In(1—€c—p). (3.3)
HenceS, — —oo if E > 0 and S, is positive and finite otherwise. Thus the annealed
estimatee? for the minimal cost is obtained by solving(e) = 0 for « and g fixed. As
for the constant density model, we can prove that the annealed lower bound is exact by
showing that the variance? = (M?) — (V)2 vanishes in this limit. More specifically;?
is still given by equation (2.6), except thB; and A are now given by
C(N—E,b) C(N—=2E+n,b)

C(N,b) C(N, D)

r,=1-2 (3.4)

and

. C(N—E,b)
A=l (3.5)
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In the regimee > €2 we can easily show thdt” — A2f — 1Vn so thato? — 0. The
exact minimal cost densitsg, = en is presented in figure 2 together with the results for the
constant density model. Note that the instances obttrgenerated by the Karp model are
always feasible fop > 0.

Similarly to the constant density model, the linear scalihg= o N gives non-trivial
results if b is of order 1. Actually, this corresponds to a vanishing density of 1's,
B = b/N — 0, sob plays the same role as the paramegeintroduced in the analysis
of the constant density model. In this case, the annealed entropy equation (3.1) becomes

Sa(€)/N = —€lne — (L —e€)In(1—¢) + N[l — (1 — ¢)*]. (3.6)

The lower boundZ, is presented in figure 3 together with the results for the constant density
model. The main difference between these models is that the Karp model always generates
feasible instances. We note that the two models yield very similar results for gnuall
large 8. In fact, this occurs wherevef, is small.

4. Conclusion

Despite the importance of the set covering problem, attested by the numerous practical
situations it models (Salkin 1975), there are very few average-case results concerning the
dependence of the optimal coBt, on the parameters that describe the stochastic models.
Typically, these parameters are the density of 1's of the incidence mgaiyixhe number

of constraints P), and the number of itemsV(). In general, the analyses are restricted to
the evaluation of the performance of greedy heuristic algorithms in test problems generated
by the stochastic models (Gimpel 1967, Karp 1976). The only exception we know is the
work of Vercellis (1984) which, although explicitly focusing on the dependencE,pbn

the control parameters, is limited to a particular scalingPofvith N and to a specific
stochastic model, namely, the constant density model. In this sense, we believe that the
results presented in this paper which extend the results of Vercellis (1984) to the Karp model
and give lower bounds for the optimal cost for different scaling® ofith N, are relevant
contributions to the statistical analysis of ther As mentioned before, the usefulness of this
type of analysis is due to the extensive use of stochastic models to generate test problems
for the evaluation of the performance of heuristic algorithms.

Besides the annealed approximation and the linear programming relaxation discussed in
this paper, another powerful method for generating lower bounds for integer programming
problems is the Lagrangian relaxation technique (Beasley 1993). For the set covering
problem, it consists of relaxing the constraints (1.2) by introduéirigagrangian multipliers
A= (A1, ..., Ap) into the cost function (1.1) which is then written as

P N
L\, s)= Zekkk+2si<l—ZAkaki> (4.2)
k i k

with A, > 0. Fora fixed, theN-tuple s that minimizes L is simply; = 1if ), Arar > 1,
ands; = 0 otherwise. Hence

P N

L()\) = Zek)\.]( — Z <Z)\k(1ki — 1)@(2)\]((11(1' — 1> (42)
k i k k

It can be easily shown that()) gives a lower bound foE,, for any A (Beasley 1993).

The problem then becomes to find the set of Lagrangian multipliers that maximizesis

procedure has been applied successfully to a similar integer programming problem, namely,

the knapsack problem (Meari al 1990, Fontanari 1995). In the knapsack problem dhe
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are real-valued random variables uniformly distributed over the unit intervabgade N

with e of order 1. In fact, it can be shown that the Lagrangian relaxation bound converges
to the optimal cost solution with probability 1 in the regime whatgoes to infinity andP
remains finite (Meantet al 1990). Basically, the reason why this approach does not work
for the set covering problem is becauge= 1 is non-extensive and therefore, f§tlarge,

only the second term in theHs of equation (4.2) will contribute td.. Since this term is
negative or zero, the maximum value tlatcan take on i = 0, which is a quite trivial
lower bound.

Finally, we should mention that the difficulty in applying the replica formalism to the
set covering problem or to the knapsack problem, that would allow for the exact calculation
of the average entropy, is the basic requirement that the elemgntaust be positive.

As a result, the average ovef; generates effective high-order interactions between the
replicas, which makes the analysis extremely involved. Thus, it seems that the annealed
approximation is the only technique that can be used to studgdhén the diverse non-

trivial regimes of scaling of® with N.
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Appendix

In this appendix we calculate the linear programming) (elaxation lower bound for the
optimal cost of the minimum cardinality set covering problem for the constant density model
in the regime wheré is of order 1. In the_p relaxation the problem is again to minimize
the cost (1.1) subject to constraints (1.2), except that novs;thare real-valued variables,

i.,e. 0< s; < 1. Since the entropy can take on negative values in this case, we employ
the canonical ensemble formulation of the statistical mechanics to obtairp tedaxation
lower bound. It is given by

ER = (In Z(h)) (A1)

. R
— lim —

h—o00 0h
where

1
Z(h) =]‘[/ ds exp(-hzsj>]_[®<zakjsj —1> (A2)
j J0 j k j
is the partition function, and is the inverse of the temperature. The quenched average
over the variablesy; is carried out through the replica method. Using the identity

(INZ) = lim }In<Z”> (A.3)
n—0n

we first evaluatd Z") for integern and then analytically continue o= 0. The calculation

is simple in this limit because i = }_;s; is of order 1 thens; must be of order AN,

so that we can make expansions in powers;oand retain only the leading term. More
specifically, using the integral representation for the theta function we are faced with the
evaluation of the following average:

P n N n
M= <exp(i SN 9kaakjs;>> =1] < exp(iakj > 9kas;‘>> (A.4)
k a j a

Jjk
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whereJy, is a Lagrangian multiplier that appears in the integral representation for the theta
function. Note that we have made explicit use of the statistical independence tifat
characterize the constant density model. Expanding in powess afid keeping terms of
order ¥ N yields

P n N P n N
M= eI 2D s ) =erw(i 2D 7). 49)
k a k a j

Thus the net result of the average was to replag®y its meang. Introducing the auxiliary
variable E, = >_; s/, it is straightforward to carry out the integration owst The final
result is

o] [e%s) a N . AN
(<z”>)l/n%/ dE@(ﬁE—l)e‘hE/ (féE@E—N)(S';E) . (A.8)

—00

Here E is the Lagrangian multiplier associated with the auxiliary variable Since the
averaging procedure has not resulted in an effective interaction between replicas, the
different replicas give the same contribution to #ite moment ofZ. Furthermore, due to
the replacement afy; by g the constraints become independent of the index1, ..., P,

and since®’ (x) = ©(x) the parameteP disappears altogether from our results. Using
the following approximation

- N
(S'nx) ~ exp(—Nx2/6) (A7)

X

valid for large N, to evaluate the integral ovet we find

1/B + N(h — 6)/12
INZy~—- 3N+ ANGh-6>%+InH A8
(InZ) SN+ 5 N( )+n[ N2 ] (A.8)
where H (x) = [ dt/«/2r e*/2. Taking the limitN — oo yields
1 1
EfP="4+_ —_ A.9
5 t. 6 (A.9)
if h>6,and
E*f = IN®-h) (A.10)

otherwise. HereE'"? = —d(In Z(h))/dh. Thus our theory is not valid in the reginte< 6
since we have assumed th&t" is of order 1. Finally, taking the limit — oo in equation
(A.9) yields

1
ELP ==, (A.11)
p
We emphasize that this result was derived under the assumption of statistical independence
of the elementsy; i = 1,..., N, which is not valid for the Karp model. We must be

careful not to undervalue equation (A.11). Although it is obvious that if the elemgnts
are replaced by their meagpsin (1.2) then the optimal cost must equdsl the calculations
presented above show how this replacement can be justified under the assumptidns that
is of order 1 and that the elementg are statistically independent random variables.
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